

HOLE LOCK LIFTING ANCHOR SYSTEM (LIFTING SYSTEM)

TECHNICAL MANUAL

RIGHTS TO CHANGES AND ERRORS RESERVED

EXM-HLLA-DC-1001 R4-05.12.2022

TABLE OF CONTENT

1. EXMET HOLE LOCK LIFTING SYSTEM	
1.1 Introduction	4
1.2 Materials	4
1.3 Colour Coding System	5
1.4 Safety Features	5
1.5 Product Marking	5
2. LIFTING ANCHORS	
2.1 EEA Lifting Anchor	6
2.2 ETH Lifting Anchor	8
2.3 EHF Lifting Anchor	10
2.4 ETHB Lifting Anchor	12
2.5 EHP Lifting Anchor	14
2.6 EHS Lifting Anchor	16
3. DO'S AND DON'TS	18
4. ACTIONS ON LIFTING ANCHOR (AS PER VDI/BV-BS 6205)	
4.1 Statical System	19
4.2 Element Self-Weight	20
4.3 Adhesion and Form Friction	20
4.4 Dynamic Effects	21
4.5 Distribution of Load for Asymmetrical Elements	21
4.6 Spread Angle	22
4.7 Number and Actions of Lifting Anchors	22
4.7.1 Load Condition "Erection in Combination with Adhesion and Form Friction"	22
4.7.2 Load Condition "Erection"	23
4.7.3 Load Condition "Lifting and Handling Under Combined Tension and Shear"	23

HOLE LOCK LIFTING ANCHOR

The Hole Lock Lifting System consists of a flat steel anchor, a recess former, and a lifting clutch used for all lifting applications.

The key benefits and features of The Hole Lock Lifting System are as below:

- Safe transportation of nearly all elements.
- Wide range of anchors for all load directions.
- Easy installation of anchors by using recess former
- Available in many load classes up to 26 Tons.
- In-plane and out-plane lifting.

- An Erection anchor allows tilting horizontally cast elements, thus eliminating the need of using a tilting table.

1.1 Introduction

The Hole Lock Lifting System is a high-quality and economical lifting system that allows lifting precast elements in any direction. EXMET Hole lock lifting system consists of a flat steel anchor, recess former, and a lifting clutch – making their combination one of the easiest and fastest solutions for the transportation of precast elements for all lifting applications.

Figure 1. Hole Lock Lifting System

1.2 Materials

EXMET Spherical head lifting anchors are available in following materials.

Table 2. Materials

Liftings	Material	Material Type	Standard
ETH, EEA, EHP, EHF, EHS	S355J2 + N	Electro Zinced	EN 10025
ETHBs	1.4301	Stainless Steel	EN 10088
ETHBa	1.4401	Acid Resistant Steel	EN 10088
EHP	1.4571		EN 10088

1.3 Colour Coding System

A colour coding system for different diameters of lifting insert is used for easy identification.

Table 1. Colour Codes for Hole Lock Lifting System
--

Load Category (t)	Load Categories Covered (t)	Colour
	0.7	
2.5	1.4	Lucky Orange
	2.0	
	3.0	
5.0	4.0	Antique Steel
	5.0	
10.0	7.5	Diver
10.0	10.0	Plum
	12.5	
	14.0	
26.0	17.0	Pale Green
	22.0	
	25.0	

1.4 Safety Features

The Hole lock lifting system has been tested for a high safety level. The general safety factor given to concrete failure mechanisms is 2.5 against the concrete's characteristic (5% fractile) strength. It is lower than steel as it is generally unaffected by multiple uses.

1.5 Product Marking

Product marking includes Anchor Capacity, Height, Product Name, and Year of Manufacture as shown in below figures:

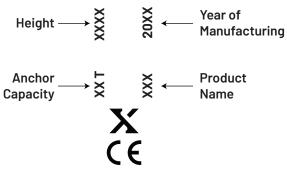


Figure 2. Marking

EEA LIFTING ANCHOR

Table 2. Materials

Lifting Anchor	Material	Material Type	Standard
EEAez	S355J2 + N	Electro-Zinced	EN 10025

*This anchor is also available in Plain Steel, HDG and Stainless Steel versions.

Table 2. EEA Lifting Insert Dimensions

Components Recommendation

🗸 Column	~	TT Slabs	✓ Trusses
✓ Thin Wall Element	ıts	🗸 Tilting A	pplications

Tabl	e 2. EEA Lif	ting Insert Dimensio	ons								
		Color Code									
		Lifting Anchor	1.4	2.5	4.0	5.0	7.5	10.0	12.5	17.0	22.0
	Dimension (Figure 3)										
		h[mm]	200	230	270	290	320	390	500	500	500
		a[mm]	55	55	70	70	95	95	148	148	148
		t[mm]	6	10	12	15	15	20	20	25	30
		b[mm]	14	14	18	18	26	26	35	35	35
		g[mm]	45	45	70	70	90	90	90	90	90
		k[mm]	10	10	10	10	15	15	15	15	15
	Design Load Capacity (SWL),			e 4)							
		$\beta = 0^{\circ} - 45^{\circ}$	14.0	25.0	40.0	50.0	75.0	100.0	125.0	170.0	220.0
		$\gamma = 0^{\circ} - 10^{\circ}$	14.0	25.0	40.0	50.0	75.0	100.0	125.0	170.0	220.0
		$\gamma = 10^{\circ} - 00^{\circ}$	7.0	12.5	20.0	25.0	37.5	50.0	62.5	85.0	110.0
	Minimum	and Minimum Anchor Insert Spacing in Wall Elements (Figure 4)									
	Wall Th	iickness, B [mm]	100	120	150	160	175	240	260	300	360
	Dis	Minimum Edge tance, X/2 [mm]	250	300	350	375	600	600	750	750	750
		nimum Centre to Distance, X [mm]	500	600	700	750	1200	1200	1500	1500	1500
	Reinforcement (Figure 5)										
	Mesh	Reinforcement, 1 [mm²/m]	2x131	2x131	2x131	2x131	2x188	2x188	2x257	2x257	2x257
	2 се- Се-	Pcs.	4	4	4	4	4	6	8	8	8
	Stirrup Reinforce- ment, 2	Diameter [mm]	6	8	8	10	10	10	10	10	10
	Rei T	Length [mm]	400	600	800	800	800	1000	1000	1200	1200
	Anchor F	Reinforcement, 3 (Ø – L1)	10-650	12-1000	16-1200	16-1500	20-1750	20-1900	25-2200	28-2500	28-3000
	Reinforc	Angle Pull ement, 4 (Ø – L2)	6-900	8-1200	10-1150	10-1500	12-1550	14-2000	16-2300	20-2700	25-3200
	Edge F	Reinforcement, 5 (both sides)	Ø8	Ø10	Ø12	Ø12	Ø12	Ø14	Ø14	Ø16	Ø16
	Reinforce	Lateral ment, (Øds x L2)	10-700	12-800	14-950	16-1000	20-1200	20-1500	25-1800	28-1800	28-1800

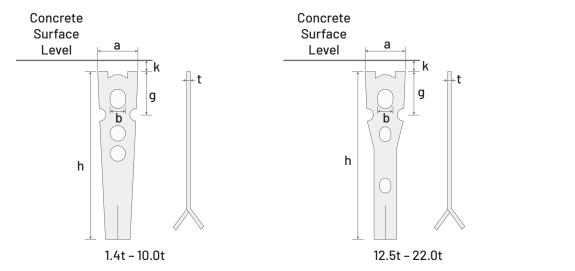


Figure 3

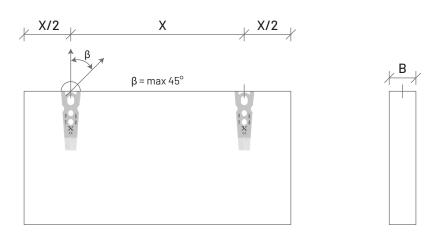


Figure 4

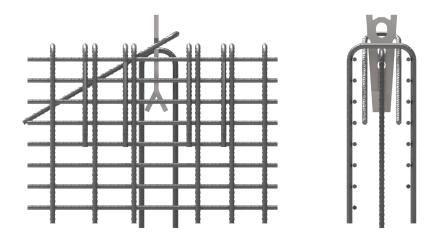


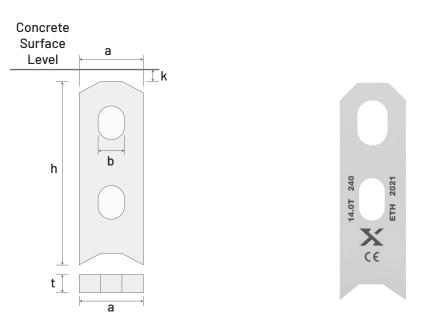
Figure 5

ETH LIFTING ANCHOR

Table 2. Materials

Lifting Anchor	Material	Material Type	Standard
ETHez	S355J2 + N	Electro-Zinced	EN 10025

*This anchor is also available in Plain Steel, HDG and Stainless Steel versions.


Table 2. ETH Lifting Insert Dimensions

Components Recommendation

Columns	🗸 Slabs
✓ Walls	✓ Beams

		Color Code										
	Lifting Anchor 1.4 2.5			3.0	4.0	5.0	7.5	10.0	14.0	22.0	26.0	
	Dimens	ion (Figure 6)										
		h[mm]	90	90	120	120	120	160	165	240	300	300
		a[mm]	30	30	40	40	40	60	60	80	90	120
		t[mm]	6	10	10	12	15	15	20	20	25	30
		b[mm]	14	14	18	18	18	26	26	35	35	35
		k[mm]	10	10	10	10	15	15	15	15	15	15
	Design I	Load Capacity (SW	/L), kN (F	igure 7)								
		$\beta = 0^{\circ} - 45^{\circ}$	14.0	25.0	30.0	40.0	50.0	75.0	100.0	140.0	220.0	260.0
		$\gamma = 0^{\circ} - 10^{\circ}$	14.0	25.0	30.0	40.0	50.0	75.0	100.0	140.0	220.0	260.0
Minimum Element Thickness and Minimum Anchor Insert Spacing in Wall Elements (Figu					jure 7)							
	Wall Th	ickness, B[mm]	80	100	100	110	120	130	140	160	180	200
	Dis	Minimum Edge stance, X/2[mm]	250	300	325	350	375	600	600	750	750	750
		nimum Centre to Distance, X [mm]	500	600	650	700	750	1200	1200	1500	1500	1500
Reinforcement (Figure 8)												
	Mesh	Reinforcement, 1 [mm²/m]	2x131	2x131	2x131	2x131	2x131	2x188	2x188	2x257	2x257	2x257
	2 ce	Pcs.	4	4	4	4	4	4	6	8	8	8
	Stirrup Reinforce- ment, 2	Diameter [mm]	6	8	8	8	10	10	10	10	10	12
	Rei M	Length [mm]	400	600	700	800	800	800	1000	1000	1200	1200
	Anchor F	Reinforcement, 3 (Ø – L1)	10-650	12-1000	12-1000	16-1200	16-1500	20-1750	25-1850	28-2350	28-3000	28-3050
	Reinforc	Angle Pull ement, 4 (Ø – L2)	6-900	8-1200	10-1150	10-1500	12-1550	14-2000	16-2300	20-2600	25-3000	25-3450
	Edge F	Reinforcement, 5 (both sides)	Ø8	Ø10	Ø10	Ø12	Ø12	Ø12	Ø14	Ø14	Ø16	Ø16

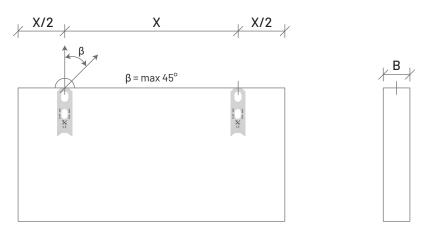


Figure 7

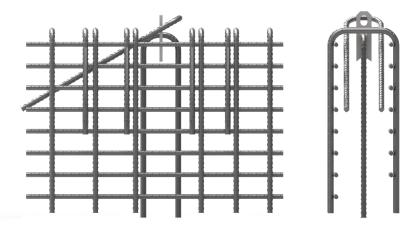


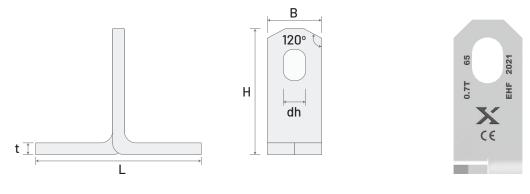
Figure 8

EHF LIFTING ANCHOR

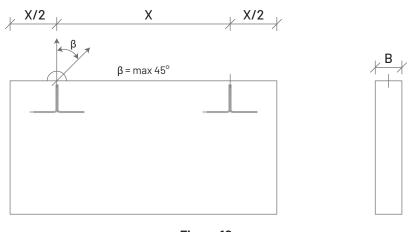
Table 2. Materials

Lifting Anchor	Material	Material Type	Standard
EHFez	S355J2 + N	Electro-Zinced	EN 10025

*This anchor is also available in Plain Steel, HDG and Stainless Steel versions.


Table 2. EHF Lifting Insert Dimensions

Components Recommendation


✓ Slabs ✓ Thin Elements

\checkmark	Balconies	

_													
	Color Code												
	Lifting Anchor	0.7	1.4	2.0	2.5	3.0	4.0	5.0	7.5	10.0	12.5	17.0	22.0
	Dimension (Figur	e 9)											
	H[mm]	65	65	70	75	90	110	125	170	200	220	270	310
	B[mm]	30	30	30	30	40	40	40	60	60	80	80	80
	dh[mm]	14	14	14	14	18	18	18	26	26	35	35	35
	t[mm]	5	6	8	10	10	12	15	16	20	16	20	28
	L[mm]	70	70	80	94	100	100	105	120	120	200	200	200
	Design Load Capacity (SWL), kN (Figure 10)												
	$\beta = 0^{\circ} - 30^{\circ}$	7.0	14.0	20.0	25.0	30.0	40.0	50.0	75.0	100.0	125.0	170.0	220.0
	Minimum Elemen	t Thickr	ness and	Minimu	m Ancho	or Insert	Spacing	g in Slab	Elemen	ts (Figu	re 10)		
	Slab Thickness, B[mm]	92	95	100	105	120	140	160	215	245	265	315	355
	Minimum Edge Distance, X/2 [mm]	140	140	150	160	190	230	260	340	400	440	540	620
	Minimum Centre to Centre Distance, X [mm]	280	280	300	320	380	460	520	680	800	880	1080	1240
	Reinforcement (F	Figure 11)										
	Bars, 1(n x Ø x L)	2+2 (Ø8x250)	2+2 (Ø8x250)	2+2 (Ø8x300)	2+2 (Ø8x300)	2+2 (Ø10x400)	2+2 (Ø12x450)	2+2 (Ø12x500)	2+2 (Ø14x600)	2+2 (Ø14x600)	2+2 (Ø14x750)	2+2 (Ø16x 600)	2+2 (Ø16x750)

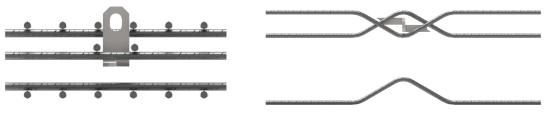


Figure 11

ETHB LIFTING ANCHOR

Table 2. Materials

Lifting Anchor	Material	Material Type	Standard
ETHBez	S355J2 + N	Electro-Zinced	EN 10025

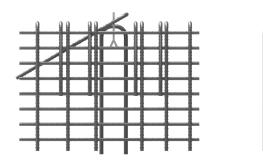
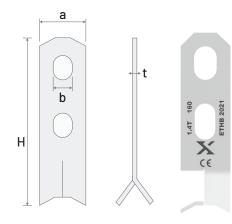

*This anchor is also available in Plain Steel, HDG and Stainless Steel versions.

Table 2. ETHB Lifting Insert Dimensions

Components Recommendation


🗸 Column	🗸 TT Slabs
✓ Walls	🗸 Beams

	Color Code									
	Lifting Anchor	1.4	2.5	3.0	4.0	5.0	7.5	10.0	14.0	22.0
Dimensio	n (Figure 13)									
	h[mm]	110-210	150-250	160-280	180-320	180-400	260-420	300-520	370-460	500-620
	a[mm]	30	30	40	40	40	60	60	80	80
	t[mm]	6	10	10	12	15	15	20	20	26
	b[mm]	14	14	18	18	26	26	35	35	35
Design Lo	oad Capacity (SWL),	kN (Figur	e 14)							
	$\beta = 0^{\circ} - 45^{\circ}$	14.0	25.0	40.0	50.0	75.0	100.0	125.0	170.0	220.0
	$\gamma = 0^{\circ} - 10^{\circ}$	14.0	25.0	40.0	50.0	75.0	100.0	125.0	170.0	220.0
	$\gamma = 10^{\circ} - 00^{\circ}$	7.0	12.5	20.0	25.0	37.5	50.0	62.5	85.0	110.0
Reinforce	ement (Figure 12)									
Mesh	Reinforcement, 1 [mm²/m]	2x188	2x188	2x188	2x188	2x188	2x188	2x188	2x257	2x257
2 d b	Pcs.	2	2	2	2	2	4	4	6	8
Stirrup Reinforce- ment, 2	Diameter [mm]	6	8	8	8	10	10	10	10	10
Rei m	Length [mm]	400	600	600	700	700	800	800	1000	1000
Edge I	Reinforcement, 3 (both sides)	Ø8	Ø10	Ø10	Ø12	Ø12	Ø12	Ø14	Ø14	Ø16
Reinforc	Angle Pull ement, 4 (Ø – L2)	8-220	10-300	10-370	12-410	12-420	16-580	16-770	20-860	25-1080

	Minimum Element Thickness and Minimum Anchor Insert Spacing in Wall Elements (Figure 14)											
Lifting Anchor 1.4												
	Wall Thickness, B [mm]	80			80		80			80		
	Minimum Edge Distance, X/2 [mm]	165			190		240			250		
	Minimum Centre to Centre Distance, X [mm]	330			380		480		50		00	
	Lifting Anchor		2.5			3.	0			4.0		
	Wall Thickness, B [mm]	120	120	120	160	12	0	120	210	150	150	
	Minimum Edge Distance, X/2 [mm]	225	300	375	240	30	0	420	270	360	480	
	Minimum Centre to Centre Distance, X [mm]	450	600	750	480	60	0	840	540	720	960	
	Lifting Anchor	5.0			7.5				10.0			
	Wall Thickness, B [mm]	350	180	180	340	24	Ю	200	450	270	250	
	Minimum Edge Distance, X/2 [mm]	270	360	600	390	45	50	630	450	555	780	
	Minimum Centre to Centre Distance, X [mm]	540	720	960	540	72	20	1200	900	1110	1560	
	Lifting Anchor		1	4.0					22.0			
	Wall Thickness, B [mm]		610		350			760		4	50	
	Minimum Edge Distance, X/2 [mm]	555			690		750			930		
	Minimum Centre to Centre Distance, X [mm]		110		1380 1500		1500	1860		60		

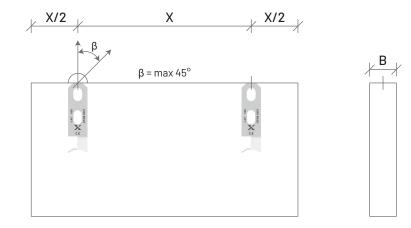


Figure 13

Figure 14

EHP LIFTING ANCHOR

Table 2. Materials

Lifting Anchor	Material	Material Type	Standard
EHPez	S355J2 + N	Electro-Zinced	EN 10025

*This anchor is also available in Plain Steel, HDG and Stainless Steel versions.

Table 2. EHP Lifting Insert Dimensions

Components Recommendation

~	Balconies	\checkmark	Slabs
~	Thin Elements		

Color Code						
Lifting Anchor	1.4	2.5	5.0	10.0		
Dimension (Figure 15)						
H[mm]	55	80	120	160		
L1[mm]	30	30	40	60		
a [mm]	8.5	8.5	12.0	17.0		
c[mm]	6	10	15	20		
tp[mm]	8	8	10	12		
L[mm]	80	80	100	140		
K[mm]	10	10	10	15		
Design Load Capacity (SWL), kN (Figure 16)						
β = 0° – 45° , γ = 0° – 10°	14.0	25.0	50.0	100.0		
Minimum Element Thickness and Minimum An	chor Insert Spaci	ng in Slab Elemer	nts (Figure 16)			
Slab Thickness, B [mm]	85	110	50	195		
Minimum Edge Distance, X/2 [mm]	220	320	480	640		
Minimum Centre to Centre Distance, X [mm]	110	160	240	320		
Reinforcement (Figure 17)						
Mesh Reinforcement, 1[mm²/m]	2x188	2x188	2x188	2x257		
Bars, 2 (n x Ø x L)	2+2(Ø8x200)	2+2(Ø10x300)	2+2 (Ø12x450)	2+2(Ø16x600)		

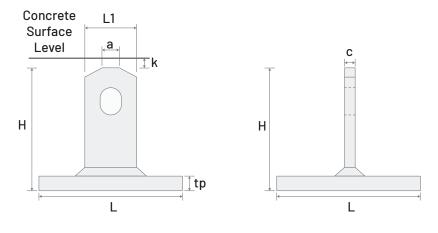


Figure 15

Figure 16

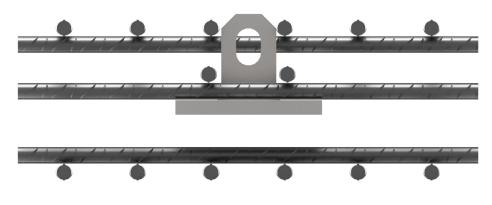


Figure 17

EHS LIFTING ANCHOR

Table 2. Materials

Lifting Anchor	Material	Material Type	Standard
EHSez	S355J2 + N	Electro-Zinced	EN 10025

*This anchor is also available in Plain Steel, HDG and Stainless Steel versions.

Table 2. EHS Lifting Insert Dimensions

Components Recommendation

✓ Sandwich Panels

,						
Color Code						
Lifting Anchor	2.5	5.0	7.5	10.0		
Dimension (Figure 18)						
H[mm]	250	300	350	350		
B[mm]	40	60	80	80		
t[mm]	10	16	16	20		
h1[mm]	72	92	123	123		
b1[mm]	14	18	26	26		
d1[mm]	14	17.5	25	26		
b2[mm]	18	26	46	35		
Design Load Capacity (SWL), kN (Figure 19)						
$\beta = 0^{\circ} - 45^{\circ}$	25.0	50.0	75.0	100.0		
Minimum Element Thickness and Minimum And	chor Insert Spaci	ng in Slab Elemer	nts (Figure 19)			
Slab Thickness, B [mm]	100	120	130	140		
Minimum Edge Distance, X/2 [mm]	300	375	600	600		
Minimum Centre to Centre Distance, X [mm]	600	750	1200	1200		
Reinforcement (Figure 20)						
Additional Reinforcement, 1 (Ø x L1)	Ø14x830	Ø16x1370	Ø25x1560	Ø25x2000		
Additional Reinforcement, 2 (Ø x L1)	Ø10x600	Ø14x700	Ø16x800	Ø20x900		
Mesh Reinforcement, 3 [mm²/m]	2xØ8x600	2xØ8x800	2xØ10x800	4xØ10x800		

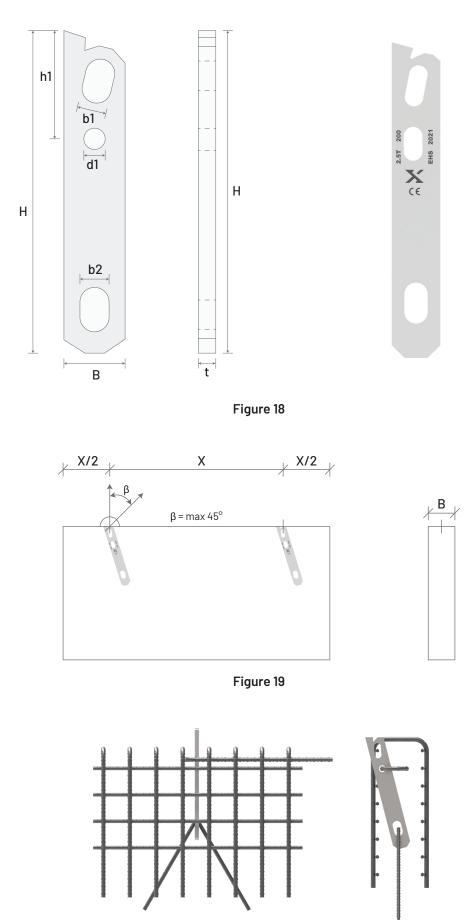
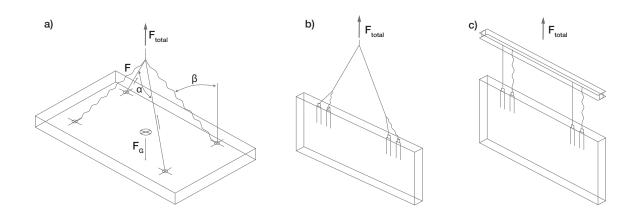


Figure 20

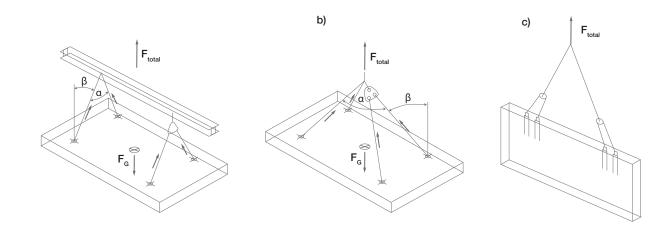
DO'S AND DON'TS

EXMET PRECAST ACCESSORIES


ACTIONS ON LIFTING ANCHOR (AS PER VDI/BV-BS 6205)

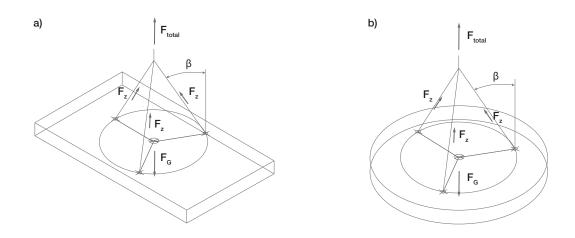
The loads acting on a lifting insert shall be determined considering the following factors:

- Statical system
- Element self-weight
- Adhesion and form friction
- Dynamic effects
- Position and number of lifting inserts and type of lifting equipment


4.1 Statistical System

The lifting equipment shall allow a statically determinate load distribution to all present lifting inserts and lifting insert systems. Figures below give examples of statically indeterminate systems where only two lifting inserts carry the load. The load distribution is not clearly defined in these applications. Therefore, statically indeterminate systems shall be avoided.

To ensure a statically determinate system and that all lifting inserts carry their required part of the load in case of applications with more than two lifting inserts transport aids such as sliding or rolling couplings or balancing beams shall be used. In below figure, more transportation aids for slabs and wall elements are illustrated.



In case of inclined lifting slings the lifting inserts are loaded by combined tension and shear loads. The inclination β according to figure above (on previous page) governs the level of combined tension and shear loads to be taken into account in the design.

In the special case of three lifting inserts located in a slab located and situated in a star pattern with the same distance to the centre of gravity with equal inclinations of 120° it is ensured that all three lifting inserts experience the same load.

4.2 Element Self-Weight

The weight F_{G} of precast elements shall be determined as given by equation below

 $F_{_{G}} = V \cdot \rho_{_{G}}$ where,

 F_{G} Weight of the precast element, in kN

V Volume of the precast element, in m³

 ρ_{G} Density of the concrete, in kN/m³

4.3 Adhesion and Form Friction

Adhesion and form friction are assumed to act simultaneously during the lifting of the precast element from the formwork. The actions for demoulding situations shall be determined from equation below

 $F_{adh} = q_{adh} \cdot A_f$ where,

 F_{adh} Action due to adhesion and form friction, in kN

 \boldsymbol{q}_{adh} Basic value of combined adhesion and form friction as per table below, in kN/m^2

 ${\sf A}_{\!_{\rm f}}$ Contact area between concrete and formwork, in m^2

Formwork and Condition ^{a)}	q _{adh} kN/m² ʰ)
Oiled Steel Mould, Oiled Plastic-Coated Plywood	≥ 1.0
Varnished Wooden Mould with Panel Boards	≥ 2.0
Rough Wooden Mould	≥ 3.0

a) Structured surfaces should be considered separately.

b) The area to be used in the calculations is the total contact area between the concrete and the form.

Note: The minimum values of Table above are valid only if suitable measures to reduce adhesion and form friction are taken e.g. casting on tilting or vibrating the formwork during the demoulding process.

4.4 Dynamic Effects

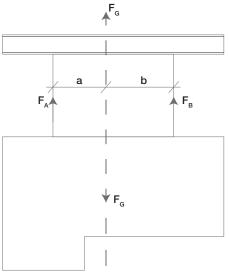
During lifting and handling of the precast elements, the lifting devices are subjected to dynamic actions. The magnitude of the dynamic actions depends on the type of lifting machinery. Dynamic effects shall be taken into account by the dynamic factor ψ_{dyn} . For further guidance values of ψ dyn depending on the lifting machinery and characteristics of the terrain are given in table below.

Condition	Dynamic Factor ψ_{dyn}
Tower Crane, Portal Crane, Mobile Crane	1.3
Lifting and Moving on Flat Terrain	2.5
Lifting and Moving on Rough Terrain	≥ 4

Note: Other values of ψ dyn than given in Table above based on reproducible tests or verified experience can be used in the design. In case of other lifting and handling conditions than reported in Table above the factor ψ dyn shall be determined on the base of tests or engineering judgement.

4.5 Distribution of Load for Asymmetrical Elements

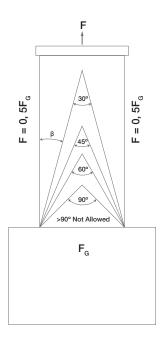
For non-symmetrical installation of lifting anchors (using spreader beam only), the load distribution is as in the equations below


 $F_{A} = F_{G} \cdot b / (a + b)$

 $F_{B} = F_{G}$. a / (a + b) where,

 F_{G} Weight of the pre-cast element, in kN

A Distance from insert to centre of gravity, in m


B Distance from insert to centre of gravity, in m

EXMET PRECAST ACCESSORIES

4.6 Spread Angle

Cable Angle (β)	Cable Angle (β)	Cable Angle (β)
0°	-	1.00
7.5°	15°	1.01
15°	30°	1.04
22.5°	45°	1.08
30°	60°	1.15
37.5°	75°	1.26
45°	90°	1.41

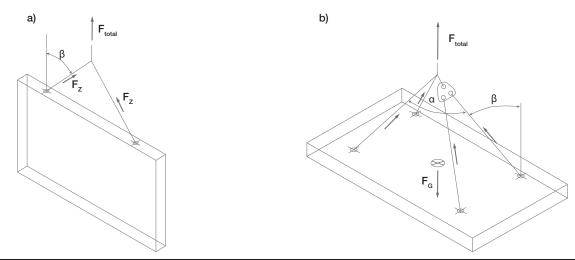
4.7 Number and Actions of Lifting Anchors

The number of and the load acting on the lifting insert shall be determined corresponding with the individual lifting situations in accordance with Equations given in the different situations below. The most unfavorable relation from action to resistance resulting from these equations governs the design.

4.7.1 Load Condition "Erection in Combination with Adhesion and Form Friction"

It is assumed that the precast element does not rest one-sided on the form. Then the action F_0 is:

 $F_{Q} = (F_{G} + F_{adh}) \cdot z/n$ where,


 $F_{\rm n}$ Load acting on the lifting insert, in kN

 F_{G} Weight of the precast element

 F_{adb} Action due to adhesion and form friction

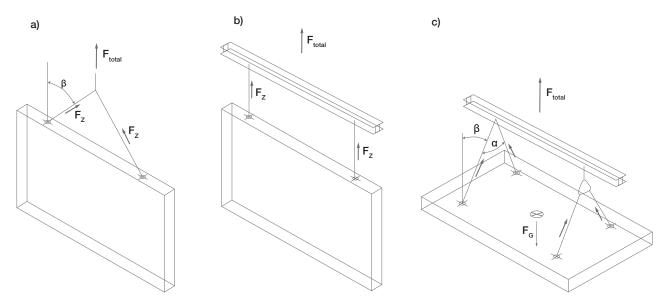
z Factor for combined tension and shear, $z = 1/\cos\beta \ln case$ of tension z = 1

n Number of load carrying lifting inserts

4.7.2 Load Condition "Erection"

It is assumed that the precast element rests one-sided on the form. Then the action F_0 is:

 $F_{0} = (F_{G}/2) \cdot \psi_{dyn} / n$ where,


 $\rm F_{0}$ Shear load acting on the lifting insert (shear) directed perpendicular to the longitudinal axis of the concrete component

F_e Weight of the precast element

 $\Psi_{_{dyn}}$ Dynamic factor

n Number of load carrying lifting inserts

4.7.3 Load Condition "Lifting and Handling Under Combined Tension and Shear"

The load condition is shown in the figure below. The action F_z is:

 $F_{z} = F_{g} \cdot \psi_{dyn} \cdot z/n$ where,

 F_7 Load acting on the lifting insert in direction of the sling axis, in kN

 $\rm F_{_{G}}$ Weight of the precast element

 Ψ_{dyn} Dynamic factor as per Table 2

z Factor for combined tension and shear, z = 1/cos β ln case of tension z = 1

n Number of load carrying lifting inserts

CONTACT US

EXMET PA OÜ

Reg. Code: 14857939

VAT No: EE102213805

OFFICE AND MANUFACTURING

Koorma 5, Muuga, 74004

Harjumaa Estonia

+372 5308 0091

V

- 🜭 +372 660 6886
- 💮 sales.pa@exmet.fi